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Abstract-The non-linear differential equations of motion. and boundary conditions. for Euler­
Bernoulli beams able to experience flexure along two principal directions (and. thus. l1exure in any
direction in space). torsion and extension are formulated. The beam's material is assumed to be
Hookean but its properties may vary along its span. The nonlinearities present in the dilTerential
equations include contributions from the curvature expression and from inertia terms. A set of
dilTerential equations with polynomial nonlinearities to cubic order. suit'lble for a perturbation
analysis of the motion. is <llso developed <lnd the validity of the inextensional approximation is
<lssessed. The equations developed here reduce to those for <In inextensional beam. In Part II of this
paper. a specific example of application is an<llyzed and the results obt'lined arc compared with
those availilble in the literature where several non-linear h:rms have been neglected" priori.

INTRODUCTION

Many important engineering slructures can be modeled as a slender member. beam-like.
conlinuous syslem. Unless external constr,.ints are imposed to restrict their motion. such
structures arc able to undergo flexure in any direction in space. torsion and extension. For
"small" motions. it is very common to linearize the dillcrential equations of mOlion of the
system in order to predict its response to external excitations. In the linearization process.
the bending curvatures of the element arc approximated as the second spatial derivatives
of its elastic bending deflections. Well-known uncoupled dillcrenti,t1 equations of motion
arc then obtained. For linite motions. such equations may yield a very poor approximation
14.)1' the system's response. They may even yield results that ure completely erroneous. for
lhe nonlinearities may pluy an essential role in determining the system's response. To
uddress such problems. it is then essentiulto devote special attention to the formulation of
the non-linear dil1crential equations of motion of such systems und to determine under
which conditions the nonlinearities in the equations can signilkantly alfect the motion.

It is common practice to approximate lixed-sliding or fixed-free elements as inex­
tensional members. The non-linear dilferential equutions describing the llexural-Ilexural­
torsional dynamics of such elements were formuluted previously (Crespo da Silva and
Glynn. 197~a). Those equations ure vulid for arbitmry stilfness und mass variations along
the beam's span. They are also valid for the general cuse where the bending motions arc of
the sume order as the torsional motion. A number of cases involving the non-linear non­
planar free und forced response of inextensional beams when the torsional natural fre­
quencies ure much higher than the bending natuml frequencies have been anulyzed (Crespo
da Silvu and Glynn. 1978b. 1979a. b; Crespo da Silva. 1978a. b. 1980a. b). The non-planar
motions of extensional beams were considered by Ho. Scott and Eisley (1975. 1976) by
making usc of a set of differential equations where the bending curvature was linearized
und torsion was neglected. It has been common practice in the literature to neglect a number
of nonlinearities in the equations of motion of extensional beams such as non-linear
contributions to the curvature and other gcometric nonlinearities (Abdcl-Rohman and
Nayfeh. 1987; Nayfeh. 1973. 1984; Nayfeh. Mook and Lobitz. 1974a; Tezak. Mook and
Nayfeh. 1978).

From a fundamentally rigorous point of view. the inextensional assumption and the
differential equations of motion for fixed-sliding or for fixed-fixed boundary conditions
should be a by-product of a unified approach that treats both extensional and inextensional
systems. One then could asscss the validity of neglecting non-linear terms. such as higher
order contributions to the bending curvatures and the torsion terms. when analyzing the
non-linear response of such systems.
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(n this paper the differential equations of motion and boundary conditions for Euler­
Bernoulli extensional beams. suitable for a perturbation analysis of the non-linear flexural­
flexural-torsional motions of either extensional or inextensional beams are derived in a
unified and mathematically consistent manner. In the formulation developed here. it is
assumed that the strains are small and that the material is Hookean. Thus. the nonlinearities
in the differential equations of motion are geometric. such as those due to higher order
terms in the expressions for the beam curvature vector and inertial terms. The differential
equations of motion are formulated in Part ( of this work. (n Part II. a specific analysis of
the response of a beam is analyzed and the effect of the different nonlinearities in the
differential equations of motion are assessed. The equations obtained in Part ( and the
results obtained in Part II are compared with other work presented in the literature for
more restricted situations. and the validity of several assumptions that are "usually" made
for inextensional beams is discussed.

Hamiltons's extended principle is used in the formulation presented here and. thus.
both the non-linear differential equations of motion and the boundary condition equations
are obtained. These equations are valid for arbitrarily large motions. From these equations.
a set of ditTerential equations where all the nonlinearities are expanded to order e. where e
is an arbitrary parameter that is used for "bookkeeping purposes" only. are then developed.
The latter equations are then suitable for a perturbation analysis of the tlexural-tlexural­
torsional-extensional motions of the beam with arbitrary stitTness variation. This extends
the work presented previously (Crespo da Silva and Glynn. 1978a) and unifies it with the
work on extensional beams that has appeared in the literature to date. The Computerized
Symbolic Manipulator MACSYMA (Rand. 1984) is used to perform most of the "al­
gebraic" steps in this paper.

KINEMATICS

Consider an initially straight undeformed thin beam of length L. with arbitrary bound­
ary conditions. mass m per unit length and of closed cross section. Figure I shows a beam
segment before and after deformation. Before deformation. the length of an intinitesimal
segment M N along a reference line of the beam (which defines the inertial direction x shown
in Fig. I) is dx. After deformation. points M and N move to M* and N*. respectively. and
the length of the segment M*N* is dr. The unit vectors.i· and =are inertial and normal to
.\-. Let the components. along (.i. J\ =). of the clastic deformation at point M* be denoted
by II(X. n. dx. t) and II·(X. t). respectively. where t is time. The orthogonal axes (~.Il. ,)

centered at M* and with unit vectors (~.~. () are fixed to the beam's cross section normal
to the reference line at M*. When the beam is undeformed the triad (e.~. () is aligned with
(.\-..1\=).

N ;

z i
Fig. I. Beam segment hefore and after deformation. and unit vector triads.
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Fig. :!. Rotational sequence used to deseribe the orient.ttion of the cross St.'Ction altcs (';.". O.
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The orientation of Ihe cross section axes (e. tf. 0 relative to the reference axes (x.y.:)
m'1Y he descrihed hy three sllccessive rotations. There arc a total of 24 different sets of
rotational sequences to describe the orientation of a body in space (Kane. Likins and
levinson. 1983). The differential equations of motion obtained for each of these 24
sequences. although "different looking". arc equivalent to each other since the angles for
each sequence C,IO be related to the angles for the remaining 23 sequences by a non-linear
transformation. Here (as in Crespo da Silva and Glynn (1978a». the thn..'C-axes sequence
(0:.0.<.0,) shown in Fig. 2 is used to describe the orientation of the (e. tf, C) axes in space.
The relations between the clastic deflections of the reference point M* and the orientation
angles 0: and 0,< arc relatively simple for that sequence. Starting by aligning the triads
(~.ri.() 'lOd (.i•.~\=). the first rotation 0: about =takes (.;. tj.C) to (';,.ti"(1 == f). The second
rotation 0,< about ,;, takes (~,.",.(,) to (e2.ti2 = "'.(2) and the final rotation O. about';2
takes (~2.'h. (2) to its final orientation (.; = ';2.", (). For the sake of clarity, each of the
three individual rotations arc shown in Fig. I. The orientation ofsegment M*N* after each
rotation is also shown in that figure. By letting primes denote partial differentiation with
respt..'Ct to x, it is readily seen that the no-shear assumption implies the following relations
between the orientation angles 0: and 0,< and tile spatial derivatives of the displacements of
point M*:

tan (): = l" /( I +11')

tan 0,< = -w'/J«(l +11')2+ l·'2).

Also. the elongation £'" fe ('r/('x- I of the reference line at M* is obtained as

(Ia)

(I b)

( Ie)

To obt'lin the differential equations of motion for the beam. the expression for the
absolute angular velocity (I) of the axis system (e. ri, () fixed to the cross section is needed.
By letting dots denote partiul difTerentiution with respect to time, the following expression is
obtained by inspection of Fig. 2 (the symbol fe used here dcnotes "equal to by definition"):

w = (j:= + (i,<,; 1+0,';
= «(;,-0: sin O,.)e+«(;: cos 0,< sin 0,+0,< cos 0.),;

+(0: cos 0, cos 0,-0,< sin 0,)(

fe w~';+w~';+w;(. (2a)
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Similarly. one can also obtain for C = O;=+O;'~I +O:~. which is needed to generate the
expression for the strain components

C = (0:-0; sin O..)~+(O; cos 01 sin 0,+0;. cos Ox)~

+(0; cos 0.•. cos 0., -0;. sin O,)~

~ C~~+C~~+C;(. (2b)

The strains at any point p* of the beam's cross section are obtained from the expressions
for the position vectors ofP* before and after deformation. Before deformation. the position
vector of p* = P is simply

(3'1)

Neglecting in-plane cross section distortion and shear. point p* e1tperiences a small a1tial
displacement relative to M* due to warping. With this displacement given as f(". ()C;~.
where f(". () is obtained by solving Laplm:e's equ'ltion for the cross section (Timoshenko
and Goodier. 1970~ Shames and Dym. 1985). the position vector of p* is then

(3h)

Using Green's strain measure (Shames and Dym. t985 ~ Annigeri. Casscnti and Dennis.
1985). one can define the strain components ell in terms of the undeformcd coordinates as

(4)

where

drp. = [( 1+ u').i + /" f + 11":] dx +,i dt! + ed(

+ CJ(Df/t.I ,,) d" + (iV/DO d~] +C ® [t!ti+,e + CJ(tl. ().;) dx. (5)

In eqn (5) ® denotes the cross product.
From eqns (3a). (4) and (5). the strain components l:", l;l~' I:.; and e~i: arc obtained as

given in eqns (6a)-(6d)

where

£u = {(I +e*)~-I +[(,,-fC~)2+(fC,-,)2]Cn/2

f.,~ = [(I +e*) tJf/Dtl+fC, -']C~/2

f."i: = [(I +e*) c/l()'+t!-fC~}Cd2

f." = «(Y/i'"Hiif/tJ()C1I2

(6'1)

(6b)

(6c)

(6d)
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EQUATIONS OF MOTION

The differential equations of motion for the beam can be obtained from a vectorial
approach. by using Newton's second law. or. equivalently. from a variational approach by
using Hamilton's principle. The use ofeither approach has often been a matter ofpreference.
Here the variational approach is used to obtain the equations of motion and the general
expression for the boundary conditions associated with them. Letting Q. denote the gener­
alized forces associated with the virtual displacements Jx (x = U. t'. w. Bt ). T and U denote.
respectively. the specific (i.e. per unit length) kinetic and strain energies associated with the
motion. and ~ We denotes the virtual work associated with forces applied at the boundaries
at x = 0 or L. the extended form of Hamilton's principle (Meirovitch. 1967) then yields

(7)

The specific kinetic energy of motion is given as

= ~ff. ,,{,i 2 + ,: 2 + li,2 + «(m" - I{WJ 2 + (1{2 + (2)(/):

+ 2(li,~+I:t;+ Ii'':)' [«('t'~ -1{m:)~--'mA+'lm~(J} d'i dC dx (8)

where /1 = /1('1. C. x) is the material density at point p. and A is the area of the cross section
at M (Fig. I).

If the (~. 1{. 0 axes :Ire chosen to he the principal axes of inerti:l of the cross section at
x =x. and centered :It the cross section's center of mass. the expression for the specific
kinetic energy is reduced to the simpler form

(9)

where the distributed mass m(x) and the distributed mass moments of inertia j.(x)
(x = ~. 1{. 0 arc given :IS

m(x) =fL,,(,/. C. x) d,{ <.I(

j~(x) =ff, (2,,(1/. (.x) d11 de: lex) =ff, 1/ 2p(11.(.X) d11 d(:

j, (x) = j,,(x) +j; (x). (lOa-d)

Neglecting the normal stress components O'~~ and 0'::. and making use of engineering
strains. the specific stmin energy is approximated as

(II)

Here it is assumed that the strains are infinitesimally small so that the linear stress­
strain relationship for the material is valid. Thus. neglecting the Poisson elTect. one has
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(1 u ~ E*exp (1x, = G*e., (i = ". O. (1~, = G*e~,. where E*(".~. x) and G*(". C. x) are. respec­
tively. Young's and shear moduli for the material. Material nonlinearities are not considered
here and. consistent with linear elasticity and the engineering approximations implicit in
eqn (II). the engineering strains are obtained by neglecting non-linear higher order terms
in eqns (6a)-(6d). These approximations have been recently addressed by Danielson and
Hodges (1987) and by Bauchau and Hong (1988). Here eqns (6aH6d) are linearized in the
elongation e*. (n addition. the axial displacement due to warping-and. thus. the function
1(".0 and its derivatives-is assumed to be infinitesimally small so that eqns (6a}-(6d) are
also linearized in 1(". 0 and its derivatives. Furthermore. the terms I c~ and I C; are also
neglected in those equations. This is equivalent to accounting for the effect of warping only
in the calculation of the torsional stiffness of the beam (Hodges and Dowell. 1974) and
approximating et~ and ex, by their dominant terms. With these simplifications. the engineer­
ing strains obtained from eqns (6) are then

ett ~ e*+(,,~+'~)CJI2

I:,~ ~ (iYRII- ')Cd2
1:,: ~ (IY/I" +IOCj2

( 12a)

(12b)

( 12c)

(12d)

Making use of eqns (12a)~(12d). the expression for the specific strain energy then becomes

where

E(x) =II P(I,.C.X) UII U,/.-I(x). A(x) =Il UI, U,

D,l\·) =I1E*'~ dl' dC. D,(x) =I1PI/~ dll d~

DJx) =Ii G*[(I,+iy"/<,()1+(C-iY"I<'If}~1 d/l dC

C,(x) = II £*c u/' dC. c., (x) = I1. £*11 U/I uC

e,J"') =II £*11' dl' dC· (14a-h)

D.,. D; anu D~ are. respectively. the bending anu torsional stiffnesses of the beam. For
beams where Young's modulus is only a function of x. £* = £(x) in eqn (13). Also. if the
material density along the beam is only a function of x. the mass center and the area
centroid of the cross section at x = x coincide with each other. For this case. all the terms
in the second bracketed group in eqn (13) vanish since c, = e~ = e~, = O. The terms in the
third bracketed group in eqn (13) involve higher order area cross section integrals and
their contribution to the differential equations of motion are neglected. For uniform and
inextensional beams. where £* = E(x). p = p(x) and en = O. the expression for the strain
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energy given byeqn (13) reduces to the simple form given previously (Crespo da Silva and
Glynn. 1978a).

By taking the variations of the kinetic and strain energies given by eqns (9) and (13),
and by integrating by parts some of the terms resulting from eqn (7), the differential
equations of motion for the beam can be put in the same form as those given previously
(Crespo da Silva and Glynn. 197841) as

G: = [A",cO:/cu' +A tI , cO.•./Cu'+i.(I +u')]' = mii-Qu

G~ = [A,,: (10:/2x' + A", cO,Rx'+i.xT = mi-Q. (x = l', w)

All, =QII,

where

i. = EAeo/C I +en)

and. with I = T - U+ EAeM2

(15a)

(15b. c)

(I5d)

( 1641)

(16I>-d)

For inextensional beams, i, stands for a Lagrange multiplier which can be determined as
illustrated previously (Crespo da Silva .md Glynn. 197Xb),

The terms that arc intcgrated by parts in eqn (7) yield the following boundary condition
equation:

L~{ <50, - Gu <5l1-G. <>ll-GM• Jw+ I/u is,l + II,. iSl" + 11.. (>Iv' +<>WBl~; =0 (i =O. L)

(17a.b)

where

(17c-e)

EQUAnONS OF MOTION EXPANDED TO O(r:') NONLINEARITIES

The partial differential equations. eqns (15a)-(l5d) arc nonlinear and coupled. They
arc valid for arbitrarily large deformations as long as the stresses in the material arc linearly
related to the engineering stmins. To be able to analyze the motion by perturbation
tl.'Chniques. the beam deformations are now restricted in m'1gnitude so that all nonlinearities
in those equations are expanded in Taylor series about an equilibrium solution which is
here t.1ken to be /I = l' = \l' = 0, = 0, This can be accomplished by first expressing the
clastic deform.Hions u. t" II' and 0, in terms Of'1 small .lrbitmry ordering parameter & as
x(x. t) = r.:x .(x. t) (x = '''11'.0,). u(x. I) = r.~/I~(X./). and then expanding eqns (15a)-(l5d)
in a Taylor series in r.. We also let EA = (EAh/r. so that the terms i.v' and i.II" in eqns
(15b) and (15c) arc transferred from the Iincurized O(r.) equations to the next higher order
approximation. The expansion of equations was done by computer with MACSYMA
(Rand. 1984), Letting Qn\:. t) denote the expanded form of Q.(x = /I.l" \l'. 0,), and drop~

ping the subscripted and starred notations for convenience. the 0(r. 3
) differential equations

of motion are obtained as given in eqns (1841)-( 18d)
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G;. = {-(D;I'" +t"~;U'T+j;f'+[(D~-DJ(O,lr"-O;l''')

- D;w'(B: +l'''W'»)' +l"(D;t"o)'+ 2(D;l'''enr - D;r'(l'''~+ W"~)

+l"I1-'[(D~ - D; )1I'''}' + [eO(t"~ - e;O,) +ed~tI,I'"+ 1\"(1/' +l"~)'

+(21/' + :k'~/2+3w'~/2+ 20;)11-")]' -t"~.;U'''(1I' +l"zr -e~.;l'''(I·'w'r

+jJu-'((i,+l"W')j' - (j,/-iJ(O, IV -o;n' - j;l" en - ~(rt"u)'

+jf(l:'z + li-") + (j; - j~)l"lI"Ii" +)x'}'+0(;;4) =mf-Q,.

G' f (D ,.. ")' ..., [(D D )(0 " 0' ")J'w = 1- ~II' +c~,l' +)~W + ~-; ,l' + ;1\'

(l8a)

(lSb)

till, ;: - (DJO; + l'"I1") + Dq,O:cn]' + (D~ -!J)[(l'''' -II''' ')0, -l''' 1I''']

+ (£"/''' -c \1''') (f" +1I"')i2+£' .('II'''~ -/'''' -401'''1\'''')
"If I 11.. \

+j~((i, + lI"n' +(J; -i'I)[W' - \\"')0, -t"li") +O(r.") "'" QI/, (l8d)

where ell =1/' +(1": + I\" ')/2 and i, "" H..k ll •

Equations (IX.I)--( ISd) are valid for nrbitrary property vari~ltionalong thl: rn:nm's span
<lnd for nrbilmry bound.uy ~onditions. In partil:ul'lr, if thl: mall.:ri.ll density along the rn:am
is only a function ofx, then e'l == £', = f!~; ;: O. It C,Ul be rendily verified that for inextcnsional
benms, where u';: -(1"'+ 11"')/2+ ()(/;4). those equations reduce to eqns (lla),-(II<.I) in
Crespo da Silva and Glynn (197841). As imlicuted by eqns (18b) nnd (18e), the expression
for ll(x, t), which ean be obt'lined from eqn (l8a), is only needed to O(e'). The expanded
form of the functions lIu' II. and fl", th'lt appear in the boundary conditions, cqns (17a)
and (17b), nrc also given below. To 0(e 3

), iJlfcO~ = -D,(O~+lJ"w')

(19a)

llw == (D" - D;)(l'"+0, 11''')0, - D~[II'" -\I" ,,;, - 211'''''u] + (t': +£'iJ, ko

+e,d20,(t'''lJ, - no") -I'"+ (u'l'')' +I'''(U'' + 31-'Zj2 +3w, z/2)] +0(1':4). (l9c)

VALIDITY Or:' THE INEXTENSIONAL AI'I'ROXtM,HION

The vulidity of the inextensional approximation can be assessed by IVst integrating
eqn (ISa) from x = L to x to obwin
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To O(e~). and with Qu(X.l} = O(e}. eqn (20) can be solved for u'(x. t) as

1233

(20)

To O(e J). the inextensionality condition eo = 0 becomes u' = -(v'~+u·'~)/2. As indi­
cated by eqn (21). the inextensionality condition is satisfied when Gu(L. t) ... 0 and
Qu(x. t) = 0, When Gu(L. t) =0 and the beam is subjected to a force with an x component
(Crespo da Silva. 1918a. b). the inextensionality condition is approached as £A - 00. The
limiting approach £A - 00 was used by Hodges. Ormiston and Peters (1980) when con­
sidering the kinematics of a rotating beam as an example in their work on the non-linear
deformation geometry of Euler-Bernoulli beams. The condition Gu(L.l) = 0 is satisfied for
free-free. fixed-free of fixed-sliding boundaries.

CONCLUDING REMARKS

In this paper. the non-linear dilTerential equations of motion for Euler-Bernoulli
be,tms undergoing extension. l1exure ..long two principal directions. and torsion. h..ve been
formulated. Unlike other formulations presented in the literature. the elTt..'Cts of..II geometric
nonlinearities. whkh arise from midplane stretching. curv.. ture and inertia terms. h..ve been
considered. The equ.. tions .tre valid for arbitmry stiffness and mass v..riation along the
beam's span. A set of 0(1:\) dilTerential equ,ttions. suitable for a perturbation analysis of
the motion. h.ls als(} tx-en developed. Here I; is an arbitr.lry perturbation parameter that is
used for "bookkeeping purposes" only...nd the llexural and torsional clastic deformations
nrc taken to be of 0(1:). The equations developed here n:duce to those for an inextensional
beam (Crespo d,l Silva and Glynn. 191H.I) by taking into account all the geometric non­
linearities.
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